
A fast booting technology on embedded linux
– mass production perspective

2008. 07.11

Hojoon Park

Embedded SW Technology Research Team



Table of Contents

q Fast Booting?
q An introduction to fast booting

l Fast booting technology on PC
l Fast booting technology on embedded system

q Useful fast booting technologies on embedded systems
l Bootloader
l kernel
l Filesystem
l Initial Script
l Shared Library

q Result
q An analysis
q Fast booting technology from the viewpoint of mass production

l novice’s fault
l mass production?
l Apply with fast booting on mass production point

2222Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Fast Booting?
q An introduction to fast booting

l Fast booting technology on PC
l Fast booting technology on embedded system

q Useful fast booting technologies on embedded systems
l Bootloader
l kernel
l Filesystem
l Initial Script
l Shared Library

q Result
q An analysis
q Fast booting technology from the viewpoint of mass production

l novice’s fault
l mass production?
l Apply with fast booting on mass production point



Fast booting? (1/2)

q Booting
l A bootstrapping process that start operating systems when the user 

turns on a computer system(http://en.wikipedia.org/wiki/Booting)
l Bootstrapping : refers to the start up process a computer uses to load 

the operating instructions

q A boot sequence in the normal manner of linux
Hardware InitializationHardware Initialization Kernel Image Copy

(Flash to RAM)
Kernel Image Copy

(Flash to RAM)
Decompress Kernel

Image
Decompress Kernel

Image
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Fast booting? (2/2)

q Fast booting
l Objective

l Reach from power-on to user functional capability using simplification and 
optimization of booting sequence as soon as possible

l Terms
l User should not sense environments between applied fast booting and non-

applied
l No modification of hardware and no supplements to apply fast booting

q Differences between embedded systems and PCs (from the 
technology application aspect)
l Less computing performance (vs PC)
l A NAND flash memory file system
l apply with fast booting technology on a embedded systems with less 

computing performance
l Minimization of condition changes along the final state of booting
l Should be ready to take a sacrifice flexibility
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An introduction of fast booting (1/2)

q Fast booting technologies on PCs
l Features

l Common uses like servers, desk-top PCs
l Various version of kernel, A lot of service, various behavior of application 

program
l Limitations

l Users should control boot sequences, not developers
l There’s no sense that fast booting technologies to harm flexibility

l Objectives
l Should apply fast booting technologies with no harm flexibility
l User should control boot sequences

– Script from of boot sequence, not program languages
l technologies

l initng (http://www.initng.org)
l Suspend-to-Disk (TuxOnIce)(http://www.suspend2.net)
l Suspend-to-RAM
l Ram Disk (initrd)
l Simplification and optimization of boot sequence scripts
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An introduction of fast booting (2/2)

q Fast booting technologies on embedded systems
l Features

l Special Purpose like Mobile Device, Factory Automation, etc…
l Specified kernel, services, file systems assigned vendor

l Limitations
l User should no control of boot sequence
l On developing has finished, boot sequence has been fixed.
l Error of boot sequence is very critical

l Objectives
l Technologies applied on the point of finishing developing.

– No more changes and modifications on boot loader, kernel, rootfs, etc…
l User should not control boot sequences

– We can use boot sequence based on non-script.
l On the debugging point of view, boot sequence can be recreated by tool.

l technologies
l XIP(http://www.ucdot.org/article.pl?sid=02/08/28/0434210&mode=thread)
l cramfs (Read Only File System)
l http://www.celinuxforum.org/CelfPubWiki/BootupTimeResources
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Useful fast booting technologies on embedded systems
(1/12)

q Summary
l Boot loader

l Removing waiting time
l Removing unnecessary initialization routines
l Non-compressed kernel image loading
l Using optimized copy routine (DMA, Polling)

l kernel
l Removing unnecessary function and device drivers
l Modularization of device drivers
l Avoiding performance measurement routine (BogoMIPS)
l Removing unnecessary message printout

l File system
l Using read-only file system
l Using lazy mount technique on R/W file systems

l Initial script
l Using binary script, not shell script
l Using init process with simplified and optimized

l Shared libraries
l Using prelinking
l Using preloading or readahead

l Optimization of application programs
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Useful fast booting technologies on embedded systems
(2/12)

q Boot loader
l Summary

l A boot loader places kernel into memory.
l We should remove various level of initialization

l Removing waiting time
l Description

– Boot loader await a couple of seconds to connect debug port
– Since boot loader cannot detect connection of debug port, boot loader 

awaits a couple of seconds on normal boot sequence.
l Method examples

– U-boot : setenv bootdelay 0
– BLOB : Modify source code directly

l Removing unnecessary initialization routines
l Description

– Should not perform initialize other devices except for necessaries to load 
kernel

l Method examples
– Removing initialization of LCD
– Removing initialization of timer
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Useful fast booting technologies on embedded systems
(3/12)

l Non-compressed kernel image loading
l Description

– Build kernel image without compress option
– It should be fast boot, but image size has been larger.
– It should be different results, performance of CPUs, speed of flash memory

l Method examples
– Use ‘make Image’ instead of ‘make zImage’
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piggy.o
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misc.o
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misc.o
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Compressed Kernel Image
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Useful fast booting technologies on embedded systems
(4/12)

l Using optimized copy routine
l Description

– Direct addressing on NOR Flash Memory like DRAM
– but, cannot access direct access NAND Flash Memory
– Sequence in a normal manner

» Initialization of Flash à Setup address of flash on flash address 
register à RnB Set and wait à Copy data register into memory

l Method examples
– Copying one time of bunch of memories
– Using DMA routine

» Initialization of DMA channel à setup DMA channel to specify 
copy range à Enable DMA channel à wait until finishing copy 
àinterrupt

» There’s a lot of question marks on this technologies
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Useful fast booting technologies on embedded systems
(5/12)

q Kernel
l Summary

l Remove out other functions which will not be used without necessary.
l Removing unnecessary function and device drivers

l Description
– Routines which is not used is waste à Decrease speed of loading
– better small size of kernel image

l Method examples
– Removing unusable Kconfig variables in menuconfig of kernel
– It should be much of learning by trial and errors

l Modularization of device drivers
l Description

– Upload module after boot sequence finished
– ex : Sound device, CAM device, etc… (unnecessary for booting)

l Method examples
– Mark module functions in menuconfig of kernel
– make INSTALL_MOD_PATH=root_of_rootfs modules_install
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Useful fast booting technologies on embedded systems
(6/12)

l Avoiding performance measurement routine (BogoMIPS)
l Description

– kernel updates loops_per_jiffy value at every booting to using timer 
(BogoMIPS)

– This value should be fixed until hardware changes or modify setting
– The problem is this routine uses some loops (Delaying)

l Method examples
– Find out loops_per_jiffy after basic boot sequence
– Modify init/calibrate.c in kernel source
– Attach lpj=number  on kernel boot parameter à bypass effect
– ex : lpj=1327104 on 533MHz@SMDK6400

l Removing unnecessary message printout
l Description

– a small delaying time with printout through the serial port
– 0.5sec delay at 115200bps (printout about 7000 or more characters)

l Method examples
– Attach “quiet” on kernel boot parameter (It cannot printout on level 4 

messages)
– If you want to every message to avoid àloglevel=0
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Useful fast booting technologies on embedded systems
(7/12)

q File System
l Summary

l a mount is necessary to use file system
l in R/W file system, there are much of booting time to mount that, and avoid

l Using Read-only File System
l Description

– Without using write functionality, simplify using file system
– There are no delay time on mount read-only file systems
– One of simplest, RomFS
– The cramfs has compression functionality
– Avoid ram disk file system, copying flash into memory at boot time

l Method examples
– Classify read-only, R/W, temporary files that will include file system
– Position cramfs read-only files
– Using lazy mount technique, to include R/W files
– Temporary file uses tmpfs
– At boot sequence, avoid copy cramfs into tmpfs (delay time)
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Useful fast booting technologies on embedded systems
(8/12)

l Using lazy mount technique on R/W file systems
l Description

– In some cases, there must be write and keep files
– ex : /etc/pointercal (tslib)
– Write through lazy mount technique
– Lazy Mount?

» slow mount speed file systems like jffs2 mount after finishing 
boot sequence on user request

» On booting, using read-only file instead
l Method examples

– Assume pointercal(cramfs) file is in /etc/touch
– at booting : there are read-only file in /etc/touch
– at finishing booting : mount –t jffs2 /dev/mtdblock4 /etc/touch à

Reuse pointercal(jffs2)
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Useful fast booting technologies on embedded systems
(9/12)

q Initial Script
l Summary

l Simplify and Optimize initial script
l Using binary script

l Description
– a flexible shell script uses interpreter
– init process performs system initialization through /etc/inittab, and perform 

rc.sysinit
– at this point, init process must include shell(to perform shell script)

l Disadvantages performance of shell script
– Interpreter

» Interpret every line and perform
» Interpret meaningless line and phrases

– Use fork & exec technique when perform commands
» It should be heavy load when fork in embedded system which has big 

load using TLB
– Heavy Shell

» To perform shell script, a shell has loader, interpreter, singaling, etc..
l Method examples

– Make binary script without fork & exec technique
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Useful fast booting technologies on embedded systems
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l Using init process with simplified and optimized
l Description

– Busybox, a popular shell and commands in embedded systems
– Busybox includes init process
– Also busybox includes functionality of shell, at boot sequence, it is big 

monster of delaying boot time
– ex : a size of busybox is 1.5MB(static) at SMDK6400

l Method examples
– Combine between init process and binary script, and replace /sbin/init
– Main functionalities of init process

» Perform initial script
» Perform signaling when child process has been killed
» Perform respawn every 1sec after watching
» Perform system halt & reboot when self destruction
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Useful fast booting technologies on embedded systems
(11/12)

q Shared Libraries
l Summary

l Most of application programs include minimized code, data, and bit portion 
of shared libraries.

l /proc/process_number/maps
l Shared library are big monster when perform boot sequence, also reading 

file systems
l the problem is loading shared library into memory as soon as possible

l Prelinking
l Description

– Shared libraries are basically PIC(Position independent code) format
– When compile & link, prelinking addresses of shared library
– but, there’s no effectable
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Useful fast booting technologies on embedded systems
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l Preloading or Readahead
l Description

– Basically, shared library loaded into memory with mmap method
– Before starting process, load into memory shared libaries and can be fast launching processes

l Problem
– At before and after the launching process, it should be loaded into flash to memory à there’s 

no performance improvement
l A reason for this behavior

– If application program has multi process
» There must be synchronized when perform sequence of each processes
» If there cannot be no synchronization, using sleep code
» It can be reduce time of sleep, when loading shared libraries early
» ex : Using X-Window and Matchbox Window Manager

– It can be using optimized load method
» In some cases, DMA transfer is helpful increasing booting speed
» When CPU is idle, DMA transfer is faster
» DMA transfer will not be useful, launching application level which has started 

multitasking
» Therefore, before launching application program, it can be fast loading through DMA 

transfer
» In some case, DMA transfer has 4 times ability than general loading (2MB/sec vs

8MB/sec)
» When multitasking has started, CPU must working memory, DMA transfer would be 

worthless
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Result (1/2)

Original Phase 1 Phase 2
Boot Loader Phase 2.15 1.02 1.02 

Kernel Phase 8.25 2.77 1.77 
Initial Script Phase 7.48 1.10 1.22 
Application Phase 8.23 6.02 6.02 
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Application Phase 8.23 6.02 6.02 
Total 26.11 10.91 10.03 

Original : Initially released version
Phase 1 : initial script applied
Phase 2 : initial script applied and simplified init process



Result (2/2)
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An analysis

q An analysis
l Boot Loader Phase

l (2.15original à 1.02) sec
l There are still 1 sec or more “boot delay is 0”
l Suppose that kernel image copy

– # nand read 0x40000 0x1c0000 0xc0008000 ; bootm 0xc0…
l Kernel Phase

l (8.25original à 2.771st à 1.772nd) sec
l More effectiveness jffs2 à cramfs (Phase 1)
l Small effectiveness kernel modularization and removal of unused functionality 

(Phase 2)
l Initial Script Phase

l (7.48original à 1.101st à 1.222nd) sec
l More effectiveness binary script(Phase 1)
l It takes more small time : effect of module upload

l Application Phase
l (8.23original à 6.021st à 6.022nd) sec
l Effect of binary script
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Fast booting technology from the viewpoint of mass production(1/2)

q Novice’s fault
l “That’s are… everyone can do it”

l Structural complexity, not difficulty
l Technique applied level is a lot composition and cross dependancy

l “I am so annoying, bypass that”
l Thinking developer’s place instead customer’s place
l a lack of catching importance of fast booting

l “Where is him? He applied fast booting on our system last time.”
l A special case of IT industry. The turnover
l a lack of formal training

l “I’m not developer… Why he commands this job for me?”
l Fast booting technology is side of mass production, not developing
l The engineer of mass production thinks that developing is not range of work

q What is mass production?
l a specialized stage of production, phase of production of product
l more specialized and divide, big industry
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Fast booting technology from the viewpoint of mass production(2/2)

q Apply with fast booting on mass production point
l To solve that structural complexity with technology application

l A specialized tool of fast booting and documentation

l To solve that cognition of importance of fast booting
l Train applying fast booting on general training course and reeducation 

program in company
l Improve fast booting technology through out rapidly developing

l Applying specialized fast booting
l Needs documentation and form of formal job, not person to person
l Rapidly update fast booting tool, to apply mass production phase using 

developing phase

l Easy to use
l Develop easy tool that can use mass production engineer
l Can be estimated boot time
l Develop various fast booting technique to satisfy customer’s requests
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Thank you!
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Q&A


