
A fast booting technology on embedded linux
– mass production perspective

2008. 07.11

Hojoon Park

Embedded SW Technology Research Team

Table of Contents

q Fast Booting?
q An introduction to fast booting

l Fast booting technology on PC
l Fast booting technology on embedded system

q Useful fast booting technologies on embedded systems
l Bootloader
l kernel
l Filesystem
l Initial Script
l Shared Library

q Result
q An analysis
q Fast booting technology from the viewpoint of mass production

l novice’s fault
l mass production?
l Apply with fast booting on mass production point

2222Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Fast Booting?
q An introduction to fast booting

l Fast booting technology on PC
l Fast booting technology on embedded system

q Useful fast booting technologies on embedded systems
l Bootloader
l kernel
l Filesystem
l Initial Script
l Shared Library

q Result
q An analysis
q Fast booting technology from the viewpoint of mass production

l novice’s fault
l mass production?
l Apply with fast booting on mass production point

Fast booting? (1/2)

q Booting
l A bootstrapping process that start operating systems when the user

turns on a computer system(http://en.wikipedia.org/wiki/Booting)
l Bootstrapping : refers to the start up process a computer uses to load

the operating instructions

q A boot sequence in the normal manner of linux
Hardware InitializationHardware Initialization Kernel Image Copy

(Flash to RAM)
Kernel Image Copy

(Flash to RAM)
Decompress Kernel

Image
Decompress Kernel

Image

3333Embedded SW Technology Research TeamEmbedded SW Technology Research Team

Hardware InitializationHardware Initialization Kernel Image Copy
(Flash to RAM)

Kernel Image Copy
(Flash to RAM)

Decompress Kernel
Image

Decompress Kernel
Image

Memory / Scheduler
Initialization

Memory / Scheduler
InitializationHardware InitializationHardware InitializationMount

Initial Ramdisk
Mount

Initial Ramdisk

Initiate and Run
init process

Initiate and Run
init process

Run rc.sysinit
to insert necessary modules

Run rc.sysinit
to insert necessary modules

Remount
Root Filesystem

Remount
Root Filesystem

Boot Loader Kernel

Kernel

Kernel init script

Initiate Run Level ScriptInitiate Run Level ScriptLaunch X-WindowLaunch X-Window Launch ShellLaunch Shell

init scriptApplication Program

Fast booting? (2/2)

q Fast booting
l Objective

l Reach from power-on to user functional capability using simplification and
optimization of booting sequence as soon as possible

l Terms
l User should not sense environments between applied fast booting and non-

applied
l No modification of hardware and no supplements to apply fast booting

q Differences between embedded systems and PCs (from the
technology application aspect)
l Less computing performance (vs PC)
l A NAND flash memory file system
l apply with fast booting technology on a embedded systems with less

computing performance
l Minimization of condition changes along the final state of booting
l Should be ready to take a sacrifice flexibility

4444Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Fast booting
l Objective

l Reach from power-on to user functional capability using simplification and
optimization of booting sequence as soon as possible

l Terms
l User should not sense environments between applied fast booting and non-

applied
l No modification of hardware and no supplements to apply fast booting

q Differences between embedded systems and PCs (from the
technology application aspect)
l Less computing performance (vs PC)
l A NAND flash memory file system
l apply with fast booting technology on a embedded systems with less

computing performance
l Minimization of condition changes along the final state of booting
l Should be ready to take a sacrifice flexibility

An introduction of fast booting (1/2)

q Fast booting technologies on PCs
l Features

l Common uses like servers, desk-top PCs
l Various version of kernel, A lot of service, various behavior of application

program
l Limitations

l Users should control boot sequences, not developers
l There’s no sense that fast booting technologies to harm flexibility

l Objectives
l Should apply fast booting technologies with no harm flexibility
l User should control boot sequences

– Script from of boot sequence, not program languages
l technologies

l initng (http://www.initng.org)
l Suspend-to-Disk (TuxOnIce)(http://www.suspend2.net)
l Suspend-to-RAM
l Ram Disk (initrd)
l Simplification and optimization of boot sequence scripts

5555Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Fast booting technologies on PCs
l Features

l Common uses like servers, desk-top PCs
l Various version of kernel, A lot of service, various behavior of application

program
l Limitations

l Users should control boot sequences, not developers
l There’s no sense that fast booting technologies to harm flexibility

l Objectives
l Should apply fast booting technologies with no harm flexibility
l User should control boot sequences

– Script from of boot sequence, not program languages
l technologies

l initng (http://www.initng.org)
l Suspend-to-Disk (TuxOnIce)(http://www.suspend2.net)
l Suspend-to-RAM
l Ram Disk (initrd)
l Simplification and optimization of boot sequence scripts

An introduction of fast booting (2/2)

q Fast booting technologies on embedded systems
l Features

l Special Purpose like Mobile Device, Factory Automation, etc…
l Specified kernel, services, file systems assigned vendor

l Limitations
l User should no control of boot sequence
l On developing has finished, boot sequence has been fixed.
l Error of boot sequence is very critical

l Objectives
l Technologies applied on the point of finishing developing.

– No more changes and modifications on boot loader, kernel, rootfs, etc…
l User should not control boot sequences

– We can use boot sequence based on non-script.
l On the debugging point of view, boot sequence can be recreated by tool.

l technologies
l XIP(http://www.ucdot.org/article.pl?sid=02/08/28/0434210&mode=thread)
l cramfs (Read Only File System)
l http://www.celinuxforum.org/CelfPubWiki/BootupTimeResources

6666Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Fast booting technologies on embedded systems
l Features

l Special Purpose like Mobile Device, Factory Automation, etc…
l Specified kernel, services, file systems assigned vendor

l Limitations
l User should no control of boot sequence
l On developing has finished, boot sequence has been fixed.
l Error of boot sequence is very critical

l Objectives
l Technologies applied on the point of finishing developing.

– No more changes and modifications on boot loader, kernel, rootfs, etc…
l User should not control boot sequences

– We can use boot sequence based on non-script.
l On the debugging point of view, boot sequence can be recreated by tool.

l technologies
l XIP(http://www.ucdot.org/article.pl?sid=02/08/28/0434210&mode=thread)
l cramfs (Read Only File System)
l http://www.celinuxforum.org/CelfPubWiki/BootupTimeResources

Useful fast booting technologies on embedded systems
(1/12)

q Summary
l Boot loader

l Removing waiting time
l Removing unnecessary initialization routines
l Non-compressed kernel image loading
l Using optimized copy routine (DMA, Polling)

l kernel
l Removing unnecessary function and device drivers
l Modularization of device drivers
l Avoiding performance measurement routine (BogoMIPS)
l Removing unnecessary message printout

l File system
l Using read-only file system
l Using lazy mount technique on R/W file systems

l Initial script
l Using binary script, not shell script
l Using init process with simplified and optimized

l Shared libraries
l Using prelinking
l Using preloading or readahead

l Optimization of application programs

7777Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Summary
l Boot loader

l Removing waiting time
l Removing unnecessary initialization routines
l Non-compressed kernel image loading
l Using optimized copy routine (DMA, Polling)

l kernel
l Removing unnecessary function and device drivers
l Modularization of device drivers
l Avoiding performance measurement routine (BogoMIPS)
l Removing unnecessary message printout

l File system
l Using read-only file system
l Using lazy mount technique on R/W file systems

l Initial script
l Using binary script, not shell script
l Using init process with simplified and optimized

l Shared libraries
l Using prelinking
l Using preloading or readahead

l Optimization of application programs

Useful fast booting technologies on embedded systems
(2/12)

q Boot loader
l Summary

l A boot loader places kernel into memory.
l We should remove various level of initialization

l Removing waiting time
l Description

– Boot loader await a couple of seconds to connect debug port
– Since boot loader cannot detect connection of debug port, boot loader

awaits a couple of seconds on normal boot sequence.
l Method examples

– U-boot : setenv bootdelay 0
– BLOB : Modify source code directly

l Removing unnecessary initialization routines
l Description

– Should not perform initialize other devices except for necessaries to load
kernel

l Method examples
– Removing initialization of LCD
– Removing initialization of timer

8888Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Boot loader
l Summary

l A boot loader places kernel into memory.
l We should remove various level of initialization

l Removing waiting time
l Description

– Boot loader await a couple of seconds to connect debug port
– Since boot loader cannot detect connection of debug port, boot loader

awaits a couple of seconds on normal boot sequence.
l Method examples

– U-boot : setenv bootdelay 0
– BLOB : Modify source code directly

l Removing unnecessary initialization routines
l Description

– Should not perform initialize other devices except for necessaries to load
kernel

l Method examples
– Removing initialization of LCD
– Removing initialization of timer

Useful fast booting technologies on embedded systems
(3/12)

l Non-compressed kernel image loading
l Description

– Build kernel image without compress option
– It should be fast boot, but image size has been larger.
– It should be different results, performance of CPUs, speed of flash memory

l Method examples
– Use ‘make Image’ instead of ‘make zImage’

9999Embedded SW Technology Research TeamEmbedded SW Technology Research Team

piggy.o
(piggy.gz)

misc.o

head-
xscale.o

head.o

piggy.o
(stripped
binary
kernel
image)

misc.o

head-
xscale.o

head.o

Compressed Kernel Image

Non-compressed Kernel Image

Useful fast booting technologies on embedded systems
(4/12)

l Using optimized copy routine
l Description

– Direct addressing on NOR Flash Memory like DRAM
– but, cannot access direct access NAND Flash Memory
– Sequence in a normal manner

» Initialization of Flash à Setup address of flash on flash address
register à RnB Set and wait à Copy data register into memory

l Method examples
– Copying one time of bunch of memories
– Using DMA routine

» Initialization of DMA channel à setup DMA channel to specify
copy range à Enable DMA channel à wait until finishing copy
àinterrupt

» There’s a lot of question marks on this technologies

10101010Embedded SW Technology Research TeamEmbedded SW Technology Research Team

l Using optimized copy routine
l Description

– Direct addressing on NOR Flash Memory like DRAM
– but, cannot access direct access NAND Flash Memory
– Sequence in a normal manner

» Initialization of Flash à Setup address of flash on flash address
register à RnB Set and wait à Copy data register into memory

l Method examples
– Copying one time of bunch of memories
– Using DMA routine

» Initialization of DMA channel à setup DMA channel to specify
copy range à Enable DMA channel à wait until finishing copy
àinterrupt

» There’s a lot of question marks on this technologies

Useful fast booting technologies on embedded systems
(5/12)

q Kernel
l Summary

l Remove out other functions which will not be used without necessary.
l Removing unnecessary function and device drivers

l Description
– Routines which is not used is waste à Decrease speed of loading
– better small size of kernel image

l Method examples
– Removing unusable Kconfig variables in menuconfig of kernel
– It should be much of learning by trial and errors

l Modularization of device drivers
l Description

– Upload module after boot sequence finished
– ex : Sound device, CAM device, etc… (unnecessary for booting)

l Method examples
– Mark module functions in menuconfig of kernel
– make INSTALL_MOD_PATH=root_of_rootfs modules_install

11111111Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Kernel
l Summary

l Remove out other functions which will not be used without necessary.
l Removing unnecessary function and device drivers

l Description
– Routines which is not used is waste à Decrease speed of loading
– better small size of kernel image

l Method examples
– Removing unusable Kconfig variables in menuconfig of kernel
– It should be much of learning by trial and errors

l Modularization of device drivers
l Description

– Upload module after boot sequence finished
– ex : Sound device, CAM device, etc… (unnecessary for booting)

l Method examples
– Mark module functions in menuconfig of kernel
– make INSTALL_MOD_PATH=root_of_rootfs modules_install

Useful fast booting technologies on embedded systems
(6/12)

l Avoiding performance measurement routine (BogoMIPS)
l Description

– kernel updates loops_per_jiffy value at every booting to using timer
(BogoMIPS)

– This value should be fixed until hardware changes or modify setting
– The problem is this routine uses some loops (Delaying)

l Method examples
– Find out loops_per_jiffy after basic boot sequence
– Modify init/calibrate.c in kernel source
– Attach lpj=number on kernel boot parameter à bypass effect
– ex : lpj=1327104 on 533MHz@SMDK6400

l Removing unnecessary message printout
l Description

– a small delaying time with printout through the serial port
– 0.5sec delay at 115200bps (printout about 7000 or more characters)

l Method examples
– Attach “quiet” on kernel boot parameter (It cannot printout on level 4

messages)
– If you want to every message to avoid àloglevel=0

12121212Embedded SW Technology Research TeamEmbedded SW Technology Research Team

l Avoiding performance measurement routine (BogoMIPS)
l Description

– kernel updates loops_per_jiffy value at every booting to using timer
(BogoMIPS)

– This value should be fixed until hardware changes or modify setting
– The problem is this routine uses some loops (Delaying)

l Method examples
– Find out loops_per_jiffy after basic boot sequence
– Modify init/calibrate.c in kernel source
– Attach lpj=number on kernel boot parameter à bypass effect
– ex : lpj=1327104 on 533MHz@SMDK6400

l Removing unnecessary message printout
l Description

– a small delaying time with printout through the serial port
– 0.5sec delay at 115200bps (printout about 7000 or more characters)

l Method examples
– Attach “quiet” on kernel boot parameter (It cannot printout on level 4

messages)
– If you want to every message to avoid àloglevel=0

Useful fast booting technologies on embedded systems
(7/12)

q File System
l Summary

l a mount is necessary to use file system
l in R/W file system, there are much of booting time to mount that, and avoid

l Using Read-only File System
l Description

– Without using write functionality, simplify using file system
– There are no delay time on mount read-only file systems
– One of simplest, RomFS
– The cramfs has compression functionality
– Avoid ram disk file system, copying flash into memory at boot time

l Method examples
– Classify read-only, R/W, temporary files that will include file system
– Position cramfs read-only files
– Using lazy mount technique, to include R/W files
– Temporary file uses tmpfs
– At boot sequence, avoid copy cramfs into tmpfs (delay time)

13131313Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q File System
l Summary

l a mount is necessary to use file system
l in R/W file system, there are much of booting time to mount that, and avoid

l Using Read-only File System
l Description

– Without using write functionality, simplify using file system
– There are no delay time on mount read-only file systems
– One of simplest, RomFS
– The cramfs has compression functionality
– Avoid ram disk file system, copying flash into memory at boot time

l Method examples
– Classify read-only, R/W, temporary files that will include file system
– Position cramfs read-only files
– Using lazy mount technique, to include R/W files
– Temporary file uses tmpfs
– At boot sequence, avoid copy cramfs into tmpfs (delay time)

Useful fast booting technologies on embedded systems
(8/12)

l Using lazy mount technique on R/W file systems
l Description

– In some cases, there must be write and keep files
– ex : /etc/pointercal (tslib)
– Write through lazy mount technique
– Lazy Mount?

» slow mount speed file systems like jffs2 mount after finishing
boot sequence on user request

» On booting, using read-only file instead
l Method examples

– Assume pointercal(cramfs) file is in /etc/touch
– at booting : there are read-only file in /etc/touch
– at finishing booting : mount –t jffs2 /dev/mtdblock4 /etc/touch à

Reuse pointercal(jffs2)

14141414Embedded SW Technology Research TeamEmbedded SW Technology Research Team

l Using lazy mount technique on R/W file systems
l Description

– In some cases, there must be write and keep files
– ex : /etc/pointercal (tslib)
– Write through lazy mount technique
– Lazy Mount?

» slow mount speed file systems like jffs2 mount after finishing
boot sequence on user request

» On booting, using read-only file instead
l Method examples

– Assume pointercal(cramfs) file is in /etc/touch
– at booting : there are read-only file in /etc/touch
– at finishing booting : mount –t jffs2 /dev/mtdblock4 /etc/touch à

Reuse pointercal(jffs2)

Useful fast booting technologies on embedded systems
(9/12)

q Initial Script
l Summary

l Simplify and Optimize initial script
l Using binary script

l Description
– a flexible shell script uses interpreter
– init process performs system initialization through /etc/inittab, and perform

rc.sysinit
– at this point, init process must include shell(to perform shell script)

l Disadvantages performance of shell script
– Interpreter

» Interpret every line and perform
» Interpret meaningless line and phrases

– Use fork & exec technique when perform commands
» It should be heavy load when fork in embedded system which has big

load using TLB
– Heavy Shell

» To perform shell script, a shell has loader, interpreter, singaling, etc..
l Method examples

– Make binary script without fork & exec technique

15151515Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Initial Script
l Summary

l Simplify and Optimize initial script
l Using binary script

l Description
– a flexible shell script uses interpreter
– init process performs system initialization through /etc/inittab, and perform

rc.sysinit
– at this point, init process must include shell(to perform shell script)

l Disadvantages performance of shell script
– Interpreter

» Interpret every line and perform
» Interpret meaningless line and phrases

– Use fork & exec technique when perform commands
» It should be heavy load when fork in embedded system which has big

load using TLB
– Heavy Shell

» To perform shell script, a shell has loader, interpreter, singaling, etc..
l Method examples

– Make binary script without fork & exec technique

Useful fast booting technologies on embedded systems
(10/12)

l Using init process with simplified and optimized
l Description

– Busybox, a popular shell and commands in embedded systems
– Busybox includes init process
– Also busybox includes functionality of shell, at boot sequence, it is big

monster of delaying boot time
– ex : a size of busybox is 1.5MB(static) at SMDK6400

l Method examples
– Combine between init process and binary script, and replace /sbin/init
– Main functionalities of init process

» Perform initial script
» Perform signaling when child process has been killed
» Perform respawn every 1sec after watching
» Perform system halt & reboot when self destruction

16161616Embedded SW Technology Research TeamEmbedded SW Technology Research Team

l Using init process with simplified and optimized
l Description

– Busybox, a popular shell and commands in embedded systems
– Busybox includes init process
– Also busybox includes functionality of shell, at boot sequence, it is big

monster of delaying boot time
– ex : a size of busybox is 1.5MB(static) at SMDK6400

l Method examples
– Combine between init process and binary script, and replace /sbin/init
– Main functionalities of init process

» Perform initial script
» Perform signaling when child process has been killed
» Perform respawn every 1sec after watching
» Perform system halt & reboot when self destruction

Useful fast booting technologies on embedded systems
(11/12)

q Shared Libraries
l Summary

l Most of application programs include minimized code, data, and bit portion
of shared libraries.

l /proc/process_number/maps
l Shared library are big monster when perform boot sequence, also reading

file systems
l the problem is loading shared library into memory as soon as possible

l Prelinking
l Description

– Shared libraries are basically PIC(Position independent code) format
– When compile & link, prelinking addresses of shared library
– but, there’s no effectable

17171717Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Shared Libraries
l Summary

l Most of application programs include minimized code, data, and bit portion
of shared libraries.

l /proc/process_number/maps
l Shared library are big monster when perform boot sequence, also reading

file systems
l the problem is loading shared library into memory as soon as possible

l Prelinking
l Description

– Shared libraries are basically PIC(Position independent code) format
– When compile & link, prelinking addresses of shared library
– but, there’s no effectable

Useful fast booting technologies on embedded systems
(12/12)

l Preloading or Readahead
l Description

– Basically, shared library loaded into memory with mmap method
– Before starting process, load into memory shared libaries and can be fast launching processes

l Problem
– At before and after the launching process, it should be loaded into flash to memory à there’s

no performance improvement
l A reason for this behavior

– If application program has multi process
» There must be synchronized when perform sequence of each processes
» If there cannot be no synchronization, using sleep code
» It can be reduce time of sleep, when loading shared libraries early
» ex : Using X-Window and Matchbox Window Manager

– It can be using optimized load method
» In some cases, DMA transfer is helpful increasing booting speed
» When CPU is idle, DMA transfer is faster
» DMA transfer will not be useful, launching application level which has started

multitasking
» Therefore, before launching application program, it can be fast loading through DMA

transfer
» In some case, DMA transfer has 4 times ability than general loading (2MB/sec vs

8MB/sec)
» When multitasking has started, CPU must working memory, DMA transfer would be

worthless

18181818Embedded SW Technology Research TeamEmbedded SW Technology Research Team

l Preloading or Readahead
l Description

– Basically, shared library loaded into memory with mmap method
– Before starting process, load into memory shared libaries and can be fast launching processes

l Problem
– At before and after the launching process, it should be loaded into flash to memory à there’s

no performance improvement
l A reason for this behavior

– If application program has multi process
» There must be synchronized when perform sequence of each processes
» If there cannot be no synchronization, using sleep code
» It can be reduce time of sleep, when loading shared libraries early
» ex : Using X-Window and Matchbox Window Manager

– It can be using optimized load method
» In some cases, DMA transfer is helpful increasing booting speed
» When CPU is idle, DMA transfer is faster
» DMA transfer will not be useful, launching application level which has started

multitasking
» Therefore, before launching application program, it can be fast loading through DMA

transfer
» In some case, DMA transfer has 4 times ability than general loading (2MB/sec vs

8MB/sec)
» When multitasking has started, CPU must working memory, DMA transfer would be

worthless

Result (1/2)

Original Phase 1 Phase 2
Boot Loader Phase 2.15 1.02 1.02

Kernel Phase 8.25 2.77 1.77
Initial Script Phase 7.48 1.10 1.22
Application Phase 8.23 6.02 6.02

19191919Embedded SW Technology Research TeamEmbedded SW Technology Research Team

Application Phase 8.23 6.02 6.02
Total 26.11 10.91 10.03

Original : Initially released version
Phase 1 : initial script applied
Phase 2 : initial script applied and simplified init process

Result (2/2)

20202020Embedded SW Technology Research TeamEmbedded SW Technology Research Team

An analysis

q An analysis
l Boot Loader Phase

l (2.15original à 1.02) sec
l There are still 1 sec or more “boot delay is 0”
l Suppose that kernel image copy

– # nand read 0x40000 0x1c0000 0xc0008000 ; bootm 0xc0…
l Kernel Phase

l (8.25original à 2.771st à 1.772nd) sec
l More effectiveness jffs2 à cramfs (Phase 1)
l Small effectiveness kernel modularization and removal of unused functionality

(Phase 2)
l Initial Script Phase

l (7.48original à 1.101st à 1.222nd) sec
l More effectiveness binary script(Phase 1)
l It takes more small time : effect of module upload

l Application Phase
l (8.23original à 6.021st à 6.022nd) sec
l Effect of binary script

21212121Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q An analysis
l Boot Loader Phase

l (2.15original à 1.02) sec
l There are still 1 sec or more “boot delay is 0”
l Suppose that kernel image copy

– # nand read 0x40000 0x1c0000 0xc0008000 ; bootm 0xc0…
l Kernel Phase

l (8.25original à 2.771st à 1.772nd) sec
l More effectiveness jffs2 à cramfs (Phase 1)
l Small effectiveness kernel modularization and removal of unused functionality

(Phase 2)
l Initial Script Phase

l (7.48original à 1.101st à 1.222nd) sec
l More effectiveness binary script(Phase 1)
l It takes more small time : effect of module upload

l Application Phase
l (8.23original à 6.021st à 6.022nd) sec
l Effect of binary script

Fast booting technology from the viewpoint of mass production(1/2)

q Novice’s fault
l “That’s are… everyone can do it”

l Structural complexity, not difficulty
l Technique applied level is a lot composition and cross dependancy

l “I am so annoying, bypass that”
l Thinking developer’s place instead customer’s place
l a lack of catching importance of fast booting

l “Where is him? He applied fast booting on our system last time.”
l A special case of IT industry. The turnover
l a lack of formal training

l “I’m not developer… Why he commands this job for me?”
l Fast booting technology is side of mass production, not developing
l The engineer of mass production thinks that developing is not range of work

q What is mass production?
l a specialized stage of production, phase of production of product
l more specialized and divide, big industry

22222222Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Novice’s fault
l “That’s are… everyone can do it”

l Structural complexity, not difficulty
l Technique applied level is a lot composition and cross dependancy

l “I am so annoying, bypass that”
l Thinking developer’s place instead customer’s place
l a lack of catching importance of fast booting

l “Where is him? He applied fast booting on our system last time.”
l A special case of IT industry. The turnover
l a lack of formal training

l “I’m not developer… Why he commands this job for me?”
l Fast booting technology is side of mass production, not developing
l The engineer of mass production thinks that developing is not range of work

q What is mass production?
l a specialized stage of production, phase of production of product
l more specialized and divide, big industry

Fast booting technology from the viewpoint of mass production(2/2)

q Apply with fast booting on mass production point
l To solve that structural complexity with technology application

l A specialized tool of fast booting and documentation

l To solve that cognition of importance of fast booting
l Train applying fast booting on general training course and reeducation

program in company
l Improve fast booting technology through out rapidly developing

l Applying specialized fast booting
l Needs documentation and form of formal job, not person to person
l Rapidly update fast booting tool, to apply mass production phase using

developing phase

l Easy to use
l Develop easy tool that can use mass production engineer
l Can be estimated boot time
l Develop various fast booting technique to satisfy customer’s requests

23232323Embedded SW Technology Research TeamEmbedded SW Technology Research Team

q Apply with fast booting on mass production point
l To solve that structural complexity with technology application

l A specialized tool of fast booting and documentation

l To solve that cognition of importance of fast booting
l Train applying fast booting on general training course and reeducation

program in company
l Improve fast booting technology through out rapidly developing

l Applying specialized fast booting
l Needs documentation and form of formal job, not person to person
l Rapidly update fast booting tool, to apply mass production phase using

developing phase

l Easy to use
l Develop easy tool that can use mass production engineer
l Can be estimated boot time
l Develop various fast booting technique to satisfy customer’s requests

Thank you!

24242424Embedded SW Technology Research TeamEmbedded SW Technology Research Team

Q&A

