A fast booting technology on embedded linux
— mass production perspective

o

2008. 07.11

i—loioon Park
Embedded SW Technology Research Team

ETRI

et HMxS AT H

Electronics and Telecommunications
Research Institute

Table of Contents @

O Fast Booting?
A An introduction to fast booting

® Fast booting technology on PC
® Fast booting technology on embedded system
A Useful fast booting technologies on embedded systems

® Bootloader

® kernel

® Filesystem

® Initial Script
® Shared Library
Result

An analysis
Fast booting technology from the viewpoint of mass production

® novice's fault
® mass production?
® Apply with fast booting on mass production point

D OO

E T RI Embedded SW Technology Research Team 2

Fast booting? (1/2)

O Booting

® A bootstrapping process that start operating systems when the user
turns on a computer system()

® Bootstrapping : refers to the start up process a computer uses to load
the operating instructions

A A boot sequence in the normal manner of linux

Kernel Image Copy > Decompress Kernel

Hardware Initialization =) (Flash to RAM) Image

| Boot Loader P Kernel |
Mount S e re . < Memory / Scheduler
Initial Ramdisk SRR i E Initialization
[Kernel N|
|‘ Vl
Initiate and Run > Run rc.sysinit > Remount
init process to insert necessary modules Root Filesystem
L Kernel _ L init script J
Launch X-Window —— Launch Shell === Ipjtiate Run Level Script
Application Program init script
l¢ pp g Jle p N|

E T RI Embedded SW Technology Research Team 3

Fast booting? (2/2) @

O Fast booting

® Objective

® Reach from power-on to user functional capability using simplification and
optimization of booting sequence as soon as possible

® Terms
® User should not sense environments between applied fast booting and non-
applied
® No modification of hardware and no supplements to apply fast booting
A Differences between embedded systems and PCs (from the
technology application aspect)

® Less computing performance (vs PC)
® A NAND flash memory file system

® apply with fast booting technology on a embedded systems with less
computing performance

® Minimization of condition changes along the final state of booting
® Should be ready to take a sacrifice flexibility

E T RI Embedded SW Technology Research Team 4

An introduction of fast booting (1/2) @

O Fast booting technologies on PCs

® Features

® Common uses like servers, desk-top PCs

® Various version of kernel, A lot of service, various behavior of application

program

® Limitations

® Users should control boot sequences, not developers

® There's no sense that fast booting technologies to harm flexibility
® Objectives

® Should apply fast booting technologies with no harm flexibility

® User should control boot sequences

— Script from of boot sequence, not program languages

® technologies
® initng ()
® Suspend-to-Disk (TuxOnlIce)()
® Suspend-to-RAM
® Ram Disk (initrd)
e Simplification and optimization of boot sequence scripts

E T RI Embedded SW Technology Research Team

An introduction of fast booting (2/2) @

O Fast booting technologies on embedded systems

® Features
® Special Purpose like Mobile Device, Factory Automation, etc...
® Specified kernel, services, file systems assigned vendor
® Limitations
® User should no control of boot sequence
® On developing has finished, boot sequence has been fixed.
® Error of boot sequence is very critical
® Objectives
® Technologies applied on the point of finishing developing.
— No more changes and modifications on boot loader, kernel, rootfs, etc...
® User should not control boot sequences
— We can use boot sequence based on non-script.
e On the debugging point of view, boot sequence can be recreated by tool.
® technologies
o XIP()
e cramfs (Read Only File System)
e http://www.celinuxforum.org/CelfPubWiki/BootupTimeResources

E T RI Embedded SW Technology Research Team

Useful fast booting technologies on embedded system@
(1/12) Feto

O Summary

® Boot loader
® Removing waiting time
® Removing unnecessary initialization routines
® Non-compressed kernel image loading
® Using optimized copy routine (DMA, Polling)
® kernel
® Removing unnecessary function and device drivers
® Modularization of device drivers
® Avoiding performance measurement routine (BogoMIPS)
® Removing unnecessary message printout
® File system
® Using read-only file system
® Using lazy mount technique on R/W file systems
® [Initial script
® Using binary script, not shell script
® Using init process with simplified and optimized
® Shared libraries
® Using prelinking
® Using preloading or readahead
® Optimization of application programs

E T RI Embedded SW Technology Research Team

Useful fast booting technologies on embedded systemsas
(2/12) -7,

1 Boot loader

® Summary
® A boot loader places kernel into memory.
® We should remove various level of initialization
® Removing waiting time
® Description
— Boot loader await a couple of seconds to connect debug port

— Since boot loader cannot detect connection of debug port, boot loader
awaits a couple of seconds on normal boot sequence.

® Method examples
— U-boot : setenv bootdelay 0
— BLOB : Modify source code directly
® Removing unnecessary initialization routines
® Description

- EhOUIF not perform initialize other devices except for necessaries to load
erne

® Method examples
— Removing initialization of LCD
— Removing initialization of timer

E T RI Embedded SW Technology Research Team 8

Useful fast booting technologies on embedded systemgas
(3/12)

® Non-compressed kernel image loading
® Description
— Build kernel image without compress option
— It should be fast boot, but image size has been larger.
— It should be different results, performance of CPUs, speed of flash memory
® Method examples
— Use 'make Image’ instead of ‘make zImage'

Non-compressed Kernel Image —>
piggy.o piggy.o
(piggy.gz) (stripped
binary
kernel
image)
misc.o
xscale.o o oulEely) L
head-
head.o Compressed Kernel Image xscale.o
head.o

E T RI Embedded SW Technology Research Team 9

Useful fast booting technologies on embedded systemsas
(4/12) -

® Using optimized copy routine
® Description
— Direct addressing on NOR Flash Memory like DRAM
— but, cannot access direct access NAND Flash Memory
— Sequence in a normal manner

» Initialization of Flash = Setup address of flash on flash address
register > RnB Set and wait > Copy data register into memory

® Method examples
— Copying one time of bunch of memories
— Using DMA routine

» Initialization of DMA channel - setup DMA channel to specify
copy range > Enable DMA channel - wait until finishing copy
—>interrupt

» There’s a lot of question marks on this technologies

ET RI Embedded SW Technology Research Team 10

Useful fast booting technologies on embedded systemgas
(5/12)

1 Kernel

® Summary
® Remove out other functions which will not be used without necessary.

® Removing unnecessary function and device drivers
® Description
— Routines which is not used is waste - Decrease speed of loading
— better small size of kernel image
® Method examples
— Removing unusable Kconfig variables in menuconfig of kernel
— It should be much of learning by trial and errors

® Modularization of device drivers
® Description
— Upload module after boot sequence finished
— ex : Sound device, CAM device, etc... (unnecessary for booting)
® Method examples
— Mark module functions in menuconfig of kernel
— make INSTALL_MOD_PATH=root_of_rootfs modules_install

E T RI Embedded SW Technology Research Team

Useful fast booting technologies on embedded systemgss
(6/12) -y

® Avoiding performance measurement routine (BogoMIPS)
® Description

— kernel updates loops_per_jiffy value at every booting to using timer
(BogoMIPS)

— This value should be fixed until hardware changes or modify setting
— The problem is this routine uses some loops (Delaying)
® Method examples
— Find out loops_per_jiffy after basic boot sequence
— Modify init/calibrate.c in kernel source
— Attach Ipj=number on kernel boot parameter - bypass effect
— ex : Ipj=1327104 on 533MHz@SMDK6400

® Removing unnecessary message printout
® Description
— a small delaying time with printout through the serial port
— 0.5sec delay at 115200bps (printout about 7000 or more characters)
® Method examples

— Attach “quiet” on kernel boot parameter (It cannot printout on level 4
messages)

— If you want to every message to avoid =>loglevel=0

E T RI Embedded SW Technology Research Team

Useful fast booting technologies on embedded systemgas
(7/12)

O File System

® Summary
® a mount is necessary to use file system
® in R/W file system, there are much of booting time to mount that, and avoid

® Using Read-only File System
® Description
— Without using write functionality, simplify using file system
— There are no delay time on mount read-only file systems
— One of simplest, RomFS
— The cramfs has compression functionality
— Avoid ram disk file system, copying flash into memory at boot time
® Method examples
— Classify read-only, R/W, temporary files that will include file system
— Position cramfs read-only files
— Using lazy mount technique, to include R/W files
— Temporary file uses tmpfs
— At boot sequence, avoid copy cramfs into tmpfs (delay time)

ET RI Embedded SW Technology Research Team 13

Useful fast booting technologies on embedded systemgss
(8/12)

Esto

® Using lazy mount technique on R/W file systems
® Description
— In some cases, there must be write and keep files
— ex : [etc/pointercal (tslib)
— Write through lazy mount technique
— Lazy Mount?

» slow mount speed file systems like jffs2 mount after finishing
boot sequence on user request

» On booting, using read-only file instead
® Method examples

— Assume pointercal(cramfs) file is in /etc/touch
— at booting : there are read-only file in /etc/touch

— at finishing booting : mount —t jffs2 /dev/mtdblock4 /etc/touch >
Reuse pointercal(jffs2)

E T RI Embedded SW Technology Research Team

Useful fast booting technologies on embedded systemgas
(9/12)

A Initial Script

® Summary
e Simplify and Optimize initial script
® Using binary script
® Description
— a flexible shell script uses interpreter
— init pr_oc_tg:ss performs system initialization through /etc/inittab, and perform
rc.sysini
— at this point, init process must include shell(to perform shell script)
e Disadvantages performance of shell script
— Interpreter
» Interpret every line and perform
» Interpret meaningless line and phrases
— Use fork & exec technique when perform commands

» It should be heavy load when fork in embedded system which has big
load using TLB

— Heavy Shell
» To perform shell script, a shell has loader, interpreter, singaling, etc..
® Method examples
— Make binary script without fork & exec technique

E T RI Embedded SW Technology Research Team 15

Useful fast booting technologies on embedded systems«s
(10/12) -,

® Using init process with simplified and optimized
® Description
— Busybox, a popular shell and commands in embedded systems
— Busybox includes init process

— Also busybox includes functionality of shell, at boot sequence, it is big
monster of delaying boot time

— ex : a size of busybox is 1.5MB(static) at SMDK6400
® Method examples
— Combine between init process and binary script, and replace /sbin/init
— Main functionalities of init process
» Perform initial script
» Perform signaling when child process has been killed
» Perform respawn every 1sec after watching
» Perform system halt & reboot when self destruction

ET RI Embedded SW Technology Research Team 16

Useful fast booting technologies on embedded system@
(11/12) Feto

1 Shared Libraries

® Summary

® Most of application programs include minimized code, data, and bit portion
of shared libraries.

® /proc/process_number/maps

® Shared library are big monster when perform boot sequence, also reading
file systems

® the problem is loading shared library into memory as soon as possible
® Prelinking
® Description
— Shared libraries are basically PIC(Position independent code) format
— When compile & link, prelinking addresses of shared library
— but, there’s no effectable

E T RI Embedded SW Technology Research Team

Useful fast booting technologies on embedded systemsas
(12/12) -,

® Preloading or Readahead
® Description
— Basically, shared library loaded into memory with mmap method
— Before starting process, load into memory shared libaries and can be fast launching processes
® Problem

— At before and after the launching process, it should be loaded into flash to memory > there’s
no performance improvement

® A reason for this behavior
— If application program has multi process
» There must be synchronized when perform sequence of each processes
» If there cannot be no synchronization, using sleep code
» It can be reduce time of sleep, when loading shared libraries early
» ex : Using X-Window and Matchbox Window Manager
— It can be using optimized load method
» In some cases, DMA transfer is helpful increasing booting speed
» When CPU is idle, DMA transfer is faster
» DMA transfer will not be useful, launching application level which has started
multitasking
» 'tl'here%fore, before launching application program, it can be fast loading through DMA
ransfer
» In some case, DMA transfer has 4 times ability than general loading (2MB/sec vs
8MB/sec)
» When multitasking has started, CPU must working memory, DMA transfer would be
worthless

E T RI Embedded SW Technology Research Team 18

Result (1/2)

Original Phase 1 Phase 2
Boot Loader Phase 2.15 1.02 1.02
Kernel Phase 8.25 2.77 1.77
Initial Script Phase 7.48 1.10 1.22
Application Phase 8.23 6.02 6.02
Total 26.11 10.91 10.03

Original : Initially released version
Phase 1 : initial script applied
Phase 2 : initial script applied and simplified init process

ETRI

Embedded SW Technology Research Team

Result (2/2)

Result

"0riginal ™Phase 1 "Phase?

26.11

Boot Loader Phase Kernel Phase Initial Script tpplication Phase Total
Phase

ET Rl Embedded SW Technology Research Team 20

An analysis @

O An analysis

® Boot Loader Phase
® (2.154ginal = 1.02) sec
® There are still 1 sec or more “boot delay is 0”
® Suppose that kernel image copy
— # nand read 0x40000 0x1c0000 0xc0008000 ; bootm 0xcO...

® Kernel Phase
o (8'250riginal > 2'77lst 2> 1'772nd) S€C
® More effectiveness jffs2 - cramfs (Phase 1)

® Small effectiveness kernel modularization and removal of unused functionality
(Phase 2)

® Initial Script Phase

® (7.48,ginal 2 1.10,4 > 1.22,,4) sec

® More effectiveness binary script(Phase 1)

o It takes more small time : effect of module upload
® Application Phase

® (8'23original > 6'Ozlst > 6'022nd) SecC

e Effect of binary script

ET RI Embedded SW Technology Research Team 21

Fast booting technology from the viewpoint of mass production(1/2) @

Esto

O Novice's fault

® "That’s are... everyone can do it”
e Structural complexity, not difficulty
® Technique applied level is a lot composition and cross dependancy
® "I am so annoying, bypass that”
® Thinking developer’s place instead customer’s place
® a lack of catching importance of fast booting
® "Where is him? He applied fast booting on our system last time.”
® A special case of IT industry. The turnover
® a lack of formal training
® "“I'm not developer... Why he commands this job for me?”
® Fast booting technology is side of mass production, not developing
® The engineer of mass production thinks that developing is not range of work

O What is mass production?

® a specialized stage of production, phase of production of product
® more specialized and divide, big industry

E T RI Embedded SW Technology Research Team

Fast booting technology from the viewpoint of mass production(2/2) @

Esto

A Apply with fast booting on mass production point

® To solve that structural complexity with technology application
® A specialized tool of fast booting and documentation

® To solve that cognition of importance of fast booting

® Train applying fast booting on general training course and reeducation
program in company

® Improve fast booting technology through out rapidly developing
® Applying specialized fast booting
® Needs documentation and form of formal job, not person to person

® Rapidly update fast booting tool, to apply mass production phase using
developing phase

® Easy to use
® Develop easy tool that can use mass production engineer
® Can be estimated boot time
® Develop various fast booting technique to satisfy customer’s requests

E T RI Embedded SW Technology Research Team

Thank you!
QA

ETIR
[
Embedde
d
SW Technology Research
rch Team
pL

