User-Space, Multi-Core
Development Issues I\

What do we do with all of these
processors?

Mike Anderson \
Chief Scientist
The PTR Group, Inc. l

http:/ /www.theptrgroup.com

MultiCore-ELC-SF-1 04/08/2009 - Copyright © 2009 The PTR Group Inc.

What We Will Talk About

#Motivations for multi-core processors
#Scaling issues

#Linux support for multi-processing
#Designing software for multi-processing
#Demo

MultiCore-ELC-SF-2 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Multi-Core Motivations

#Unless you've been living under a rock,
you’'ve heard about the multi-core
revolution

» Clock speeds couldn’t scale indefinitely
- Power usage varies with the square of the voltage

#2-16 Cores are now generally available

for most of the popular CPU architectures

» Power, ARM, x86, MIPS, etc.

#Both homogeneous and heterogeneous
multi-core systems are available

MultiCore-ELC-SF-3 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Dual-Core PowerPC from FreeScale

#MPC8641D

+#Dual E600
cores can run E3 -
SMP or

detached mode ﬂ

#MPX bus keeps
the processor’s
caches
coherent

MultiCore-ELC-SF-4 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ l ’= TR

Quad-Core MPCore ARM-11

#Quad ARM-11
processors PPN | i o

#Specialized
iInterrupt
distribution for

==] = 1 = = =) =
. J - [1] .

routing and -
Interrupt S
balancing =

#Bus snhooping to
improve cache o w
coherency

MultiCore-ELC-SF-5 4 2 - ight © 2 The PTR .
ultiCore 04/08/2009 - Copyright © 2009 The Group Inc \l PTR

Dual-Core MIPS from Broadcom

+#Dual MIPS-64
with Quad-
issue, in-order

Dabug/ Bus SB_1 SB1 512 KB Data
Trace Core Ccore L2 Cache Mover

. . Interface 256 Bits
pipeline 2 e

Controller

*600_800 MHZ E Bus runs at 1/2 core clock @ 126 Gbps
cores Kl K3 EN

GPIO! 10/100/ 10100/ 10/100/
Interrupt/ 1000 1000 1000 T
POWE r PCMCIA MAC MAC MAG - il

Genefic Bus

dissipation of 8- SR O
] OW @ 800 MHZ 2Gbps 19.2 Gbps

1 Gbps 3 x GMIV2 x 16-bit FIFO
@ 2 Gbps/@ 6 Gbps

Source:Broadcom Corporation

MultiCore-ELC-SF-6 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Intel™ Nehalem™ and Atom™

#The i7 architecture
starts with 4 cores
and scales to 12

¥Shared L3 cache to
help mitigate code
migration and data S it B (oo o R A ot o (1 |
sharing effects T e

+The dual-core Atom o
330 is also shipping

» Supports
hyperthreading as well

e: TranquilPC.com

N AT

MultiCore-ELC-SF-7 04/08/2009 - Copyright © 2009 The PTR Group Inc.

Embedded Heterogeneous MCP

*The TI OMAP is a 900d o]] [e] [| 5o
example of a

heterogeneous multi- .
core processor

Video Accelerator
7 Accelarator (1vA)
M Data
EBluetooth®

> ARM and DsP = e
processors on die " — e

= o
. A ”T":‘ AES, PKA, Secure WDT, Keys
4¢The use in cell phones
EAC AC

and reference boards

Pyl (s Touch Screen Controller
e Audio Amplifier

like the Beagleboard iy R o =
show heterogeneous -
MCPs can meet varying

embedded |

requirements

RRRRR

Power

Source: elinux.org

ALPTR

MultiCore-ELC-SF-8 04/08/2009 - Copyright © 2009 The PTR Group Inc.

Special-Purpose Heterogeneous MCPs

#The IBM Cell processor is
another example of a
heterogeneous multi-core
processor

» Built for the PS/3 game
console

#But, it makes an excellent
RADAR processing engine

» High-performance
computing engine

64-bit PRC CPU

) i -

MIC BIC
Dual XDR FlexlO

The CELL Architecture Source: IBM

MultiCore-ELC-SF-9 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

AMP vs. SMP

#Asymmetric Multi- iy

WIAINIE

Processing has been around i
for decades !I';||||-||-{|-

» Separate CPUs with separate i
O/S tied together with LANs

» Message-passing
programming paradigm

#Symmetric Multi-Processing
dates back to 1964

» One O/S to bind them all

S :UVA

ource:
MultiCore-ELC-SF-10 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ l Y —w o —4

Characteristics of SMP/MCP Machines

#All processors see everything
» Memory, |/0O, interrupts, etc.

#There is only one kernel

» The scheduler determines which applications
are assigned to which processor
#Applications can migrate between
pProcessors

#They do not typically share caches

» This model changes when we shrink SMP to

the chip level for MCPs g

MultiCore-ELC-SF-11 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Advantages of SMP/MCPs

+#Given multiple processors, applications can each
run on their own processor

» This can be coupled with Simultaneous Multi-
Threading (SMT or hyperthreading) as well

- 2 processors look like 4 processors

+This tends to favor applications that have
threads that are independently schedulable

» l.e., the 1-1 threading model found in Linux
+#Interrupt latency is minimized

» The interrupt runs on any free processor
#Processor cores can be partitioned

» Alternate O/S can be run on other cores

» Hypervisors can help in offloading work

MultiCore-ELC-SF-12 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Problems with SMP/MCPs

#SMP/MCPs do not scale perfectly

» Because the memory is shared between CPUs and
the memory has a finite bandwidth, SMP/MCP
machines can develop “hot spots” where multiple
applications must serialize on a single piece of data

+Thread/ISR migration can lead to poor cache
utilization

» We need to flush the caches if a thread or ISR
migrates

+#Multiple processors can lead to race conditions

» We need to provide for multi-processor
synchronization

MultiCore-ELC-SF-13 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Multi-Core Performance Issues

#Assuming a shared bus architecture:

» Dual core runs at about 180% of single core of same
speed
- Quad core runs 50% faster than the dual
- 270% faster than the single core

#Remember, multi-core is typically clocked slower
than a single core

» Lower heat production and power consumption

» But, poorer performance for single-threaded
applications

MultiCore-ELC-SF-14 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Multi-Processor Use Cases

SMP

Network

*O/S manages applications transparently
*Good for control plane

@ *Bus bandwidth a limit for data plane

Y

Partitioning

Network

*Typically AMP

*Frequently implemented via light-weight

executives or hypervisors

*Works for both control & data plane

*Partitioned processors can run alternate O/S

or thin layers

Partitioned processors are data shufflers

«Data plane cores can be simpler and cheaper
*But, deep packet inspection suffers if
they're too simple

MultiCore-ELC-SF-15 4/08/2 - ight © 2 T .
ultiCore 04/08/2009 - Copyrig 009 The PTR Group Inc \K PTR

g
0

Multi-Processing Use Cases #2

Offloading

Network

CPU-intensive work is sent to alternate
core(s) with thin executive

/‘\ \ *Used in deep packet inspection and
security applications

Standby

Network

*Idle cores are held in reserve for redundancy

*Supports adding more capacity in the field via
software

L oad updates to idle core and switch

*Rapid S/W upgrade with little downtime

MultiCore-ELC-SF-16 4/08/2 - ight © 2 The P .
ultiCore 04/08/2009 - Copyrig 009 The PTR Group Inc \K PTR

The Multi-Core Spectrum

Core Count

MultiCore-ELC-SF-17

Data shuffler
Simple packet
filtering

IBM Cell

IA Atom
ARM MPCore

Mixed
Control/Data
Low Demand

high-end
control/data plane
Level 2-7 packet
inspection

IA Nehalem
FreeScale QorlQ P4080
Cavium Octeon

|A Xeon
FreeScale MPC8641/8572

high-end

control plane

Core Performance

04/08/2009 - Copyright © 2009 The PTR Group Inc.

N, AT~

Scalability of Algorithms

#If an algorithm is perfectly scalable then
adding N processors increases the speed
N times

#This is represented in Amdahl’s Law:
S, =T,/T,

where S is the speed up, T is the time to execute
an algorithm and p is the number of processors

#Unfortunately, most code is rarely
perfectly scalable due to IPCs,
synchronization primitives and bus
contention

MultiCore-ELC-SF-18 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K ’= TR

Processor Affinity

The term processor affinity relates to the tendency for
an application to run on a particular processor and
resist migration

+# The scheduler will prefer not to migrate a process to
another CPU unless needed

» This is referred to as soft affinity
» This can be overridden with hard affinity assignments in source
code
+# Hard affinity APIs allow the developer to make explicit
assignments tO a processor or a group of Processors

» You decide where your code runs by setting a CPU bit mask for
each thread via calls like Linux’s sched setaffinity () and
sched getaffinity ()

MultiCore-ELC-SF-19 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K ’= TR

The Kernel’s Knowledge of SMP

+In both SMP and SMT, the kernel needs to be
compiled with SMP enabled

» This informs various subsystems of the presence of
multiple processors

+#The Linux scheduler supports process affinity

» A means of assigning threads to particular
processors to avoid cache flushes

+IRQ load balancing subsystem allows interrupt
lines to be directed to particular processors

» Fortunately, Linux also supports IRQ affinity to
ensure fast ISR response

MultiCore-ELC-SF-20 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Example of Interrupt Load Balancing

mike@defiant:~> more /proc/interrupts

0:
1:
8:

9:
12:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

NMI:
LOC:
ERR:
MIS:

CPUO
21427467
13217

5

2

17306
205456
158807
2291422
405909

3

168320
2174764
0

0

0

0
42831216
0

0

MultiCore-ELC-SF-21

CPU1l
21403917
14317

0

0

23786
206781
158750
2290748
400991

0

164332
2176161
0

0

0

0
42830668

IO-APIC-edge
IO-APIC-edge
IO-APIC-edge
IO-APIC-fasteoi
IO-APIC-edge
IO-APIC-edge
IO-APIC-edge
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi

timer <—— Interrupt Balancing

i8042

rtc
acpi‘ﬁlnterrupt Affinity

i8042
libata
libata
nvidia
ipw3945,
ohcil394

uhci hecd:
uhci hcd:
uhci hcd:
uhci hcd:

ethO

usbl, ehci hcd:usb5
usb2, HDA Intel
usb3

usb4

sdhci:slot0

04/08/2009 - Copyright © 2009 The PTR Group Inc.

N, AT~

Threads and Processes

#The classic process model has a single
thread of control with a dedicated virtual
memory address (VMA) space

#If we allow for more than one thread of
control in a single VMA, we have a multi-
threaded process

» A key factor is how the scheduler treats
these different threads of control

#Linux works like many of the RTOSes with
respect to the scheduler

» Each thread is independently schedulable
MultiCore-ELC-SF-22 04/08/2009 - Copyright © 2009 The PTR Group Inc. _& L ’= TR

Threading Example

#A reasonable example of processes vs.
threads would be an application like MS
Word

» Word is the process that anchors the VMA
#Word is comprised of multiple threads

» Repagination [ﬁ:n?ifjr;?f;;:iﬂ?f;ﬁ;i“° }
» Background printing ‘s
» WYSIWYG formatting @

» Spell checking
» Popping up that annoying paper clip thlngy
» And more...

MultiCore-ELC-SF-23 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Confusion as to what a Thread is...

#Many developers are intimidated
by threading in their applications

» They are not quite sure what a
thread is

» O/S APIs can be difficult to g
understand

#Essentially, if you can think of a
piece of code a separate sequence
of steps from the main, then its
probably a candidate to be a
thread

» A thread can be thought of as a
subroutine with a life of its own

MultiCore-ELC-SF-24 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Fine-Grained Threading via OpenMP

#Open standard focused on extending compilers
to support fine-grained parallelism via
threading

» Goal is high-performance by splitting up algorithms
and running them as parallel threads

Targetec
a.k.a. hy

» Compi

at simultaneous multi-threading (SMT
nerthreaded) and multi-core CPUs

er is responsible for creating parallel threads

» Compi

ers require hints from the developer for what

to parallelize
#http://www.openmp.org

MultiCore-ELC-SF-25

04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K e —4

OpenMP Usage

#To use OpenMP, you may need to restructure

your code:

for (j=0; j < num _elements; j++) {
my array[]j] = startval;
startval++;

}

#This loop cannot be parallelized because of the
data dependency on startval

» We need to rewrite the code like this:

#pragma omp parallel for

for (j=0; j < num _elements; j++) {
my array[j] = startval + j;

}

startval += num;elements;

MultiCore-ELC-SF-26 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ £ ’= TR

Programming for OpenMP

#0OpenMP is only supported by certain
compilers

» E.g., Intel compilers for C/C++ and
FORTRAN

» GNU gcc 4.2.1+

#Requires the use of various #pragma
directives to provide hints for the
compiler

» You need to know where they might apply

#May require you to recode your program

to make it more parallelizable
LS

Multi -ELC-SF-27 - [.
ultiCore-ELC-S 04/08/2009 - Copyright © 2009 The PTR Group Inc \K P TR

Stepping up a Level - pThreads

#O0f all of the threading APIs, the POSIX
pThreads APl has arguably the largest
number of implementations

» A non-proprietary API that can be
implemented in virtually any O/S

#The threads all live in the global address
space of the parent process VMA

» Threads can each have their own priority
- Different scheduling policies are also supported

#However, pThreads have a reputation for
being difficult to understand

MultiCore-ELC-SF-28 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

pThread Example #1 of 3

#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

int global;

void * thread(void *joiner) {
void *status;
global = pthread self();
sleep (1) ;
printf ("Parent PID is %d, TID is %d, global = %d\n",
getppid() , pthread self (), global);
if (joiner) {
if (pthread join((pthread t)joiner, é&status)) ({
exit(1l);
}

}
pthread exit((void¥*) 0);

MultiCore-ELC-SF-29 04/08/2009 - Copyright © 2009 The PTR Group Inc. _& £ P 7 R

pThread Example #2 of 3

int main(void) {

void *status;

int X;

pthread attr t attr;
pthread t curr thr id;
pthread t prev_thr id;

pthread attr init(&attr);

if (pthread attr_ setschedpolicy(&attr, SCHED RR)) ({
exit(1l);

}

/* Start 3 threads */
prev_thr id = 0;
for (x=0; x<3; x++) {
if (pthread create(&curr thr id, &attr, thread, (void*)prev_thr id)) ({
exit(1l);
}

prev_thr id = curr thr id;

MultiCore-ELC-SF-30 04/08/2009 - Copyright © 2009 The PTR Group Inc. _& £ P 7 R

pThread Example #3 of 3

/* Join last thread */
pthread join(curr thr id, &status);

)
#This example shows the same piece of code
being used to create three different threads

» Each thread is independent, but shares the VMA of
main

» Each could have its own priority and processor
affinity assigned

» Ina 1:1 threading model, each would be
independently schedulable

MultiCore-ELC-SF-31 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K ’= TR

Reentrancy and Synchronization

#Thread APIs like POSIX support semaphores,
mutexes, message queues, spin locks and a
host of other IPC mechanisms

» Due to the flat address space within the VMA, critical
sections need to be protected to avoid reentrancy
Issues

If a resource is shared, it *must* be protected

Use of semaphores can enforce ordering of
threads

» Blocking one thread does not block all threads in the
same process in 1:1 thread models

.,\é.
.,\é.

Multi -ELC-SF-32 - ' . ~ 7
ultiCore-ELC-SF-3 04/08/2009 - Copyright © 2009 The PTR Group Inc \K PTR

Simplifying Writing Thread Code

#Most threading APIs, although fairly
straightforward, have been
wrapped in class libraries

Threadi

» C++, Java, Python, Ruby, etc. sl o

#Some, like Intel’s Thread Building
Blocks are open source and run in
multiple O/Ses

» http://osstbb.intel.com/

MultiCore-ELC-SF-33 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Migrating to Multi-Core

#If your applications is single-threaded,
simply recompile for the platform and run

» Don’t be surprised if the performance
actually drops from that of a single core due
to clock-speed issues

#If the application is multi-threaded, try a
containment approach first

» Use affinity settings to lock the threads to a
single core

» Then start enhancing with mutual exclusion
to enable threads running on multiple cores

MultiCore-ELC-SF-34 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Threading Design Guidelines

#When developing applications, try to
identify those activities that can run in
parallel

#ldentify data flow through the application

» Determine what data must be shared
between activities

#ldentify the correct sequencing of the
activities
» Temporal correctness

#ldentify relative importance of activities
» These may need priority adjustments

MultiCore-ELC-SF-35 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Thread Design Guidelines #?2

Don’t assume that priorities will preclude race
conditions
» Lower priority thread can run on other core!

When designing your threads, keep them as separate as
possible
» Don’t share data unless necessary
» Use synchronization primitives when needed
- Semaphores, mutexes, message queues, etc.
Try to keep data used by threads on separate cache
lines

» Create a cache_aligned_malloc/cache_aligned_free to make
sure data is in separate cache lines to avoid false sharing

- Avoid ping-ponging between processor caches

MultiCore-ELC-SF-36 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Thread Affinity Guidelines

#If your hardware is SMP/Multi-Core, run
the application without adjusting the
affinity to see if there is a problem

» Don’t try to solve a problem if it doesn’t
exist

#If there is an issue, look at processor
loading to see if one processor is bearing
most of the effort

» If yes, then adjusting affinity comes next

MultiCore-ELC-SF-37 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K Y —w o —4

Summary

Multi-core can be thought of as SMP on a chip
#Make sure you understand and use affinity
mechanisms

» Provides the most flexibility

» Use SCHED_FIFO/SCHED_RR and priorities when
needed

» Don’t forget interrupt affinity as well
#We must consider application redesign to take
advantage of multi-core processors

» The use of threads becomes important
» POSIX pThreads API

- Good documentation, good place to start

I ¥

MultiCore-ELC-SF-38 04/08/2009 - Copyright © 2009 The PTR Group Inc. \ K —4&w o

